Bijzonder Resistente Micro-Organismen BRMO

Jan Kluytmans Arts-microbioloog Amphia, ETZ, UMCU De huidige situatie in ziekenhuizen
The big five

Recent bez

New kid on the block: verspreiding van KPC en NDM1 met incidenteel BSI

Antibiotica beleid

- Empirisch beleid bij (verdenking) sepsis:
 - Carbapenem/vancomycine/voriconazol soms in combinatie met amikacine
 - Op IC wordt colistine in sommige gevallen toegevoegd

Infectiepreventie

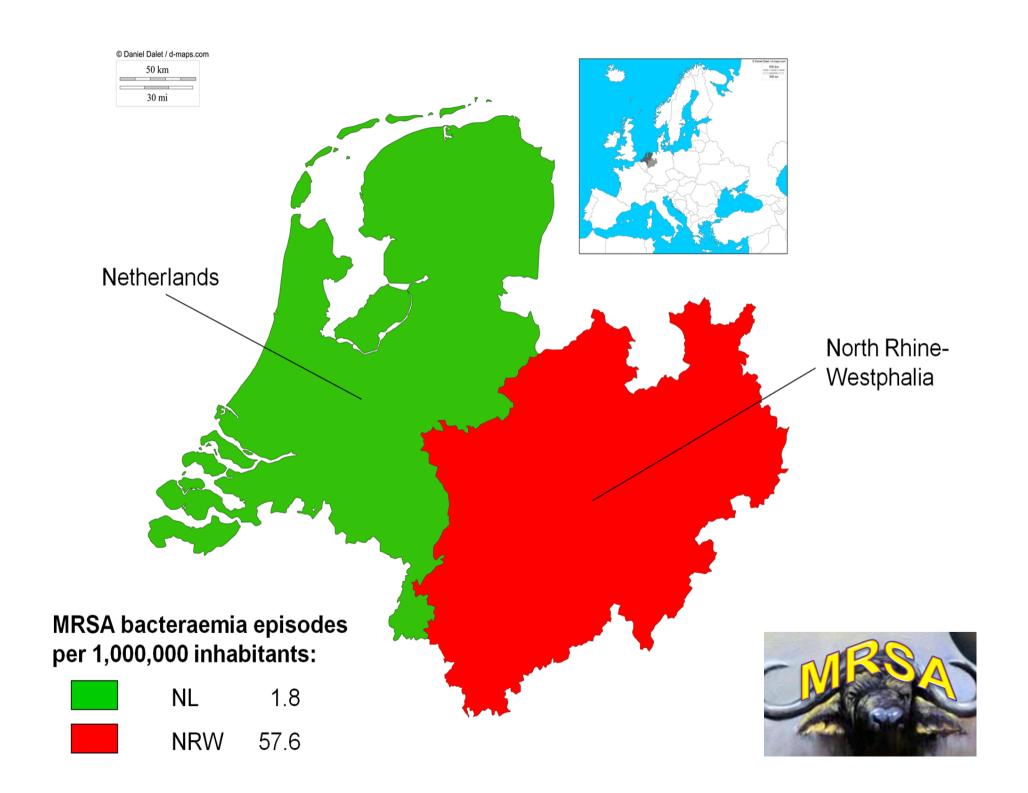
- Heel veel handalcohol (foam in, foam out)
- Schoonmaak zeer slecht
- Scheiding schoon<>vuil vrijwel afwezig
- Handsieraden bij vrijwel iedereen
- Uniformen waren alles behalve uniform
- Etc, etc, etc

Situatie NL

Nederland 2005: <5 doden

Methicillin–resistant staph aureus (MRSA) caused nearly 19,000 deaths in the United States in 2005 (compared with around 16,000 from AIDS)

most of them associated with health care settings

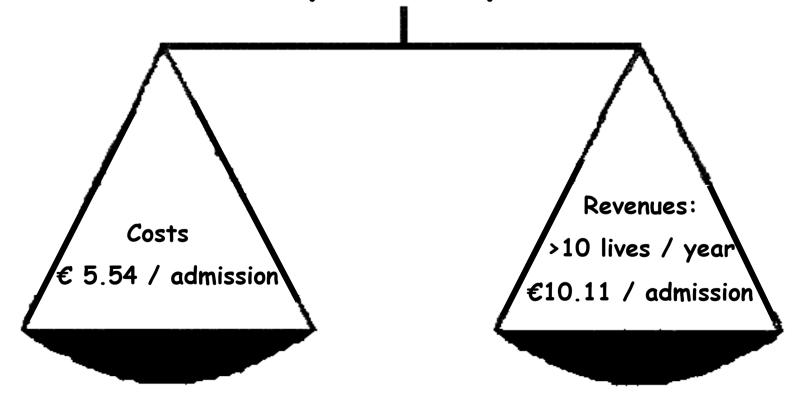

Cross Border Comparison of MRSA Bacteraemia between The Netherlands and North Rhine-Westphalia (Germany): A Cross-Sectional Study

Brigitte A. G. L. van Cleef^{1,2}*, Jan A. J. W. Kluytmans^{2,3}, Birgit H. B. van Benthem¹, Anja Haenen¹, Jos Monen¹, Inka Daniels-Haardt⁴, Annette Jurke⁴, Alexander W. Friedrich⁵

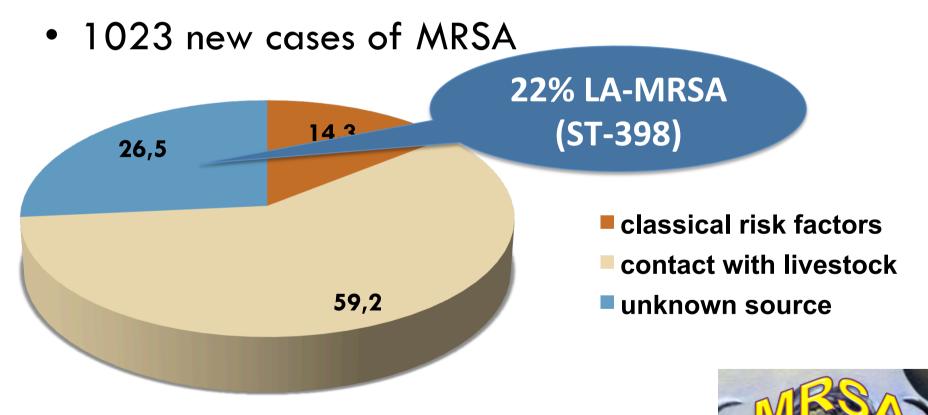
August 2012 | Volume 7 | Issue 8 | e42787

2009: laboratory based surveillance

Duitsland-Nederland: 34 - 1


- 2009 MRSA sepsis
- Noord-Rhein-Westfalen: >1100
- Nederland: <40

- Sterfte: 10 20%
 - 110-220 extra doden per jaar



Amphia Hospital

LA-MRSA in the community

17 hospitals 2 year prospective follow-up

Onbekende bron

OPEN OPEN O

Published June 19, 2013

Lifestyle-Associated Risk Factors for Community-Acquired Methicillin-Resistant *Staphylococcus aureus* Carriage in the Netherlands: An Exploratory Hospital-Based Case-Control Study

Miranda M. L. van Rijen^{1*}, Marjolein F. Q. Kluytmans-van den Bergh², Erwin J. M. Verkade^{1,3}, Peter B. G. ten Ham⁴, Beth J. Feingold⁵, Jan A. J. W. Kluytmans^{1,3,6}, on behalf of the CAM Study Group[¶]

Table 2. Potential risk factors for carriage of CA-MRSA.

Risk factor	Cases n = 96	Controls n = 96	Univariate		Multivariate	
			OR	95% CI	OR	95% CI
Born in foreign country	9	8	1.14	0.42-3.09		
Parent(s) born in foreign country	21	24	0.84	0.43-1.64		
Any foreign travel last year	50	59	0.68	0.38 1.21		
Day care centre attendance last year	3	0	∞	0.45 − ∞		
Professional contact with children last year	10	13	0.74	0.30-1.79		
Any sports last year	41	56	0.53*	0.30-0.94	0.60	0.32-1.12
Contact sports last year	5	12	0.39	0.13-1.14		
Diving last year	3	2	1.52	0.25-9.28		
Civing ever	20	14	1.54	0.73–3.27		
Sharing of diving equipment ever	20	10	2.26*	1.00–5.14	2.93**	1.19–7.21
Sauna visit last year	8	17	0.42*	0.17–1.03	0.40	0.15-1.07
Consumption of beef. $\geq 1 \times$ per week last year	72	79	0.65	0.32-1.30		
Consumption of pork, $\geq 1 \times$ per week last year	65	55	1.56	0.87–2.82		
Consumption of poultry, $\geq 1 \times$ per week last year	84	72	2.33*	1.09–5.00	2.40**	1.08-5.33
Consumption of fish, $\geq 1 \times$ per week last very	59	61	0.92	0.51–1.64		
Preparation of dinner, $\geq 1 \times$ per week last year	59	62	0.88	0.49–1.57		
Population density (number per hectare, natural logarithm)	1.98	2.13	0.83	0.63-1.08		
Chicken density (number per hectare, natural logarithm)	1.69	1.73	0.99	0.94-1.04		
Dig density (number per hectare, natural logandem)	0.99	0.66	1.04	0.96–1.12		
Cattle density (number per hectare, natural logarithm)	-0.41	-0.61	1.25*	0.98–1.59	1.30**	1.00-1.70

MRSA

- Verspreiding in community neemt toe
- Toename deels door veehouderij
- Verspreiding in zorginstelling is beperkt
- S&D beleid is (kosten) effectief
- Antibiotica gebruik speelt beperkte rol
- Wel zeer gunstige effecten voor antibiotica beleid

Epidemieën

- Laatste jaren diverse ziekenhuizen met epidemieën
- Controle nog mogelijk maar vraagt forse inspanningen (kosten)
- Relatie met basale hygiëne en schoonmaak
- Lage virulentie
- Mogelijk ingrijpende consequenties voor antibiotica beleid

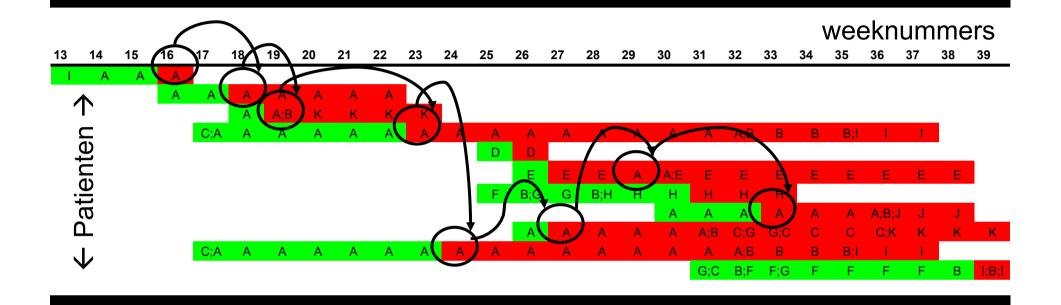
Verspreiding in Zorginstellingen

Infection Review

Dutch Guideline for Preventing Nosocomial Transmission of Highly Resistant Microorganisms (HRMO)

M.F.Q. Kluytmans-VandenBergh, J.A.J.W. Kluytmans, A. Voss

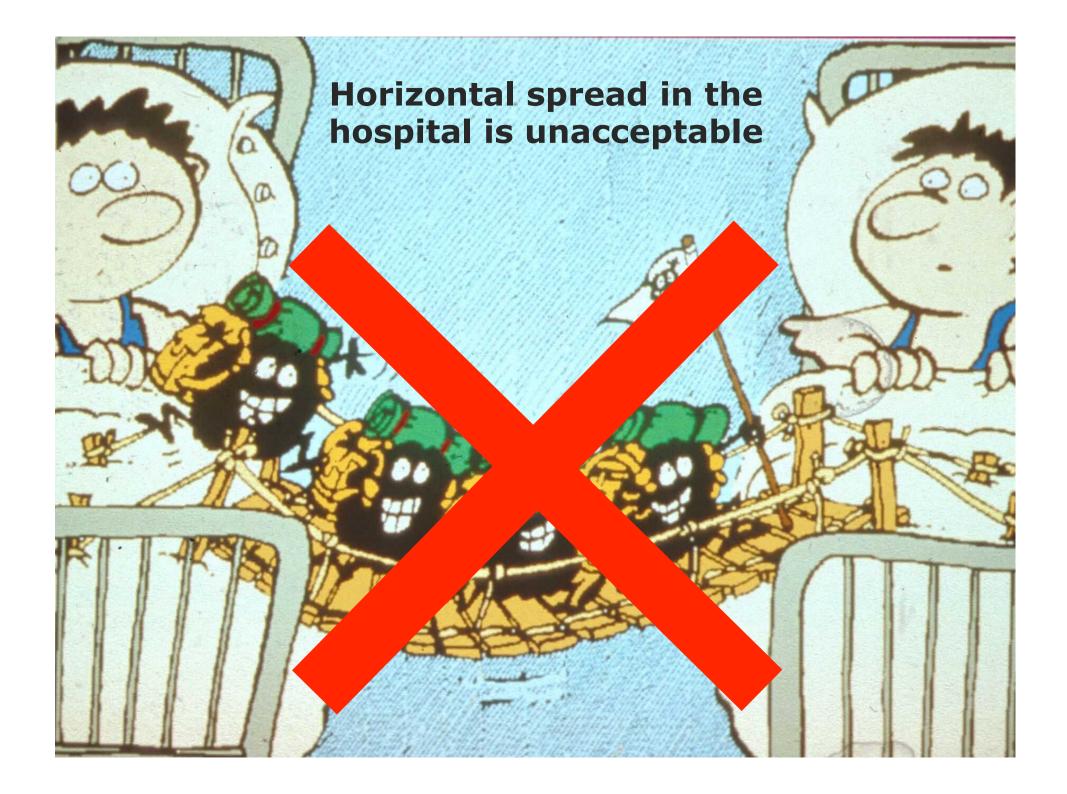
INFECTION CONTROL AND HOSPITAL EPIDEMIOLOGY APRIL 2011, VOL. 32, NO. 4

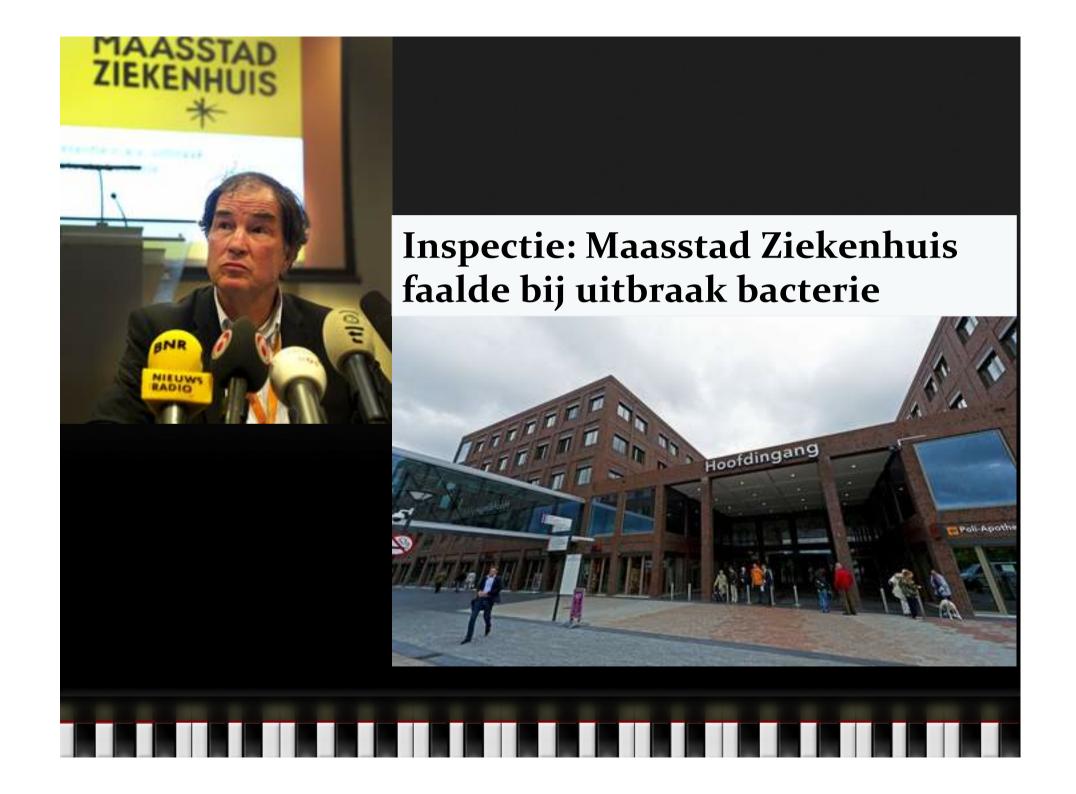

ORIGINAL ARTICLE

Highly Resistant Gram-Negative Microorganisms: Incidence Density and Occurrence of Nosocomial Transmission (TRIANGLe Study)

I. Willemsen, PhD;¹ S. Elberts, BS;¹ C. Verhulst, BS;¹ M. Rijnsburger, BS;² M. Filius, PhD;³ P. Savelkoul, MD, PhD;² J. Kluytmans, MD, PhD;^{1,2} the TRIANGLe Study Group: E. Lommerse, BS;⁴ L. Spanjaard, MD, PhD;⁴ B. Vlaminckx, MD, PhD;⁵ A. Vos, MD, PhD;⁶ M. Wulf, MD;⁷ M. Vos, MD;⁸ R. Wintermans, MD;⁹ G. Andriesse, MD, PhD;¹⁰ J. van Zeijl, MD, PhD;¹¹ E. van der Vorm, MD, PhD;¹² A. Buiting, MD, PhD;¹³ P. Sturm, MD, PhD;¹⁴ H. Blok, MS;¹⁵ A. Troelstra, MD;¹⁵ A. Kaiser, MS;² C. Vandenbroucke-Grauls, MD, PhD²

Transmissie


22 Clusters met nosocomiale transmissie waarvan 11 op de ICU Cluster grootte 2 tot 8 patiënten (modus 2)


Transmissie

Typering in combinatie met epidemiologische link

Transmissie Index = secundaire patienten primaire patienten

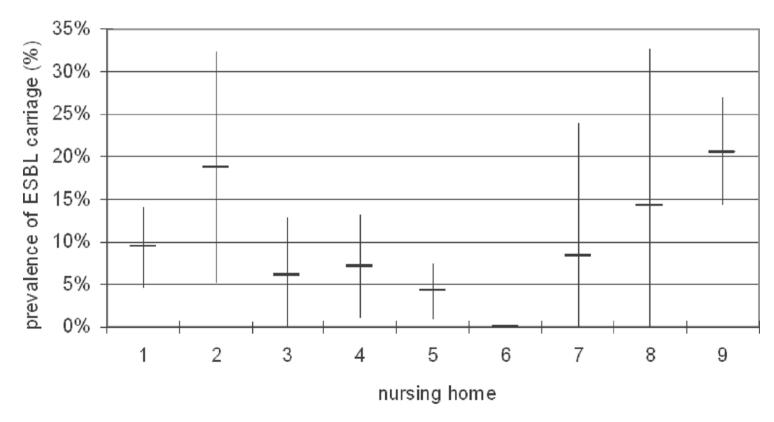
Mean Adjusted Transmissie Index 0,07 (0,0-0,2)

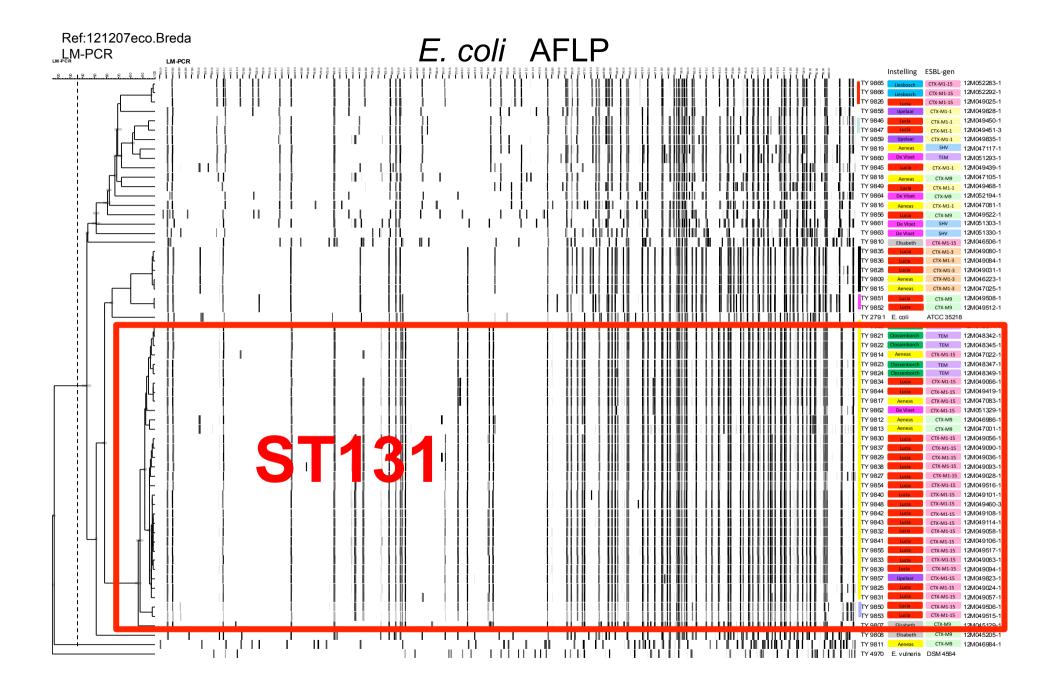
CRE

- Met name probleem in zorginstellingen
- Vroege detectie en controlemaatregelen
- Potentieel ernstige implicaties voor antibioticabeleid
- Rol van verpleeghuizen als reservoir verdient extra aandacht
- Zorgen om rol voedselketen/ oppervlaktewater

Relatief beperkt probleem

- Meestal sporadische gevallen
- Weinig verspreiding van virulente stammen
- Terughoudend antibiotica beleid speelt waarschijnlijk een belangrijke rol


De huidige situatie



Measuring the quality of infection control in Dutch nursing homes using a standardized method; the Infection prevention RIsk Scan (IRIS)

Ina Willemsen^{1*}, Jolande Nelson-Melching², Yvonne Hendriks¹, Ans Mulders³, Sandrien Verhoeff³, Marjolein Kluytmans-Vandenbergh⁴ and Jan Kluytmans^{1,2,5}



Prevalence of rectal carriage of ESBL in the 9 participating NH (vertical bars represent the 95% confidence interval).

ESBL E. coli ST131

- Mondiaal endemisch in zorginstellingen
- Ook in Nederland aanwezig
- Ondanks intensieve beheersmaatregelen is de stam persisterend aanwezig
 - Lange verblijfsduur
 - Langdurige kolonisatie
 - Weinig diagnostiek
 - Nauwelijks typeringen
- Wordt nu ook in andere verpleeghuizen in de regio gezien

Doelstelling: Nederland CRE-vrij in 2025

- Sluit de keten
 - Ziekenhuizen, verpleeghuizen, thuiszorg, huisartsen, open bevolking en veehouderij
- Samenwerken in regionale netwerken
 - Centrale coördinatie
 - Regionale uitvoering
 - Periodieke actieve screening
- Financiering van screeningskweken,
 regional beleid en uitbraak management

Nederland Groen in 2025

- Duidelijk en ambitieus doel
- Breed draagvlak
 - Politiek,
 - Beleidsmakers
 - Professionals
 - Publiek